Monday, 15:15 - 15:40 h, Room: H 2038


Houduo Qi
Computing the nearest Euclidean distance matrix


The Nearest Euclidean distance matrix problem (NEDM) is a fundamental computational problem in applications such as multidimensional scaling and molecular conformation from nuclear magnetic resonance data in computational chemistry. Especially in the latter application, the problem is often a large scale with the number of atoms ranging from a few hundreds to a few thousands. In this paper, we introduce a semismooth Newton method that solves the dual problem of (NEDM). We prove that the method is quadratically convergent. We then present an application of the Newton method to NEDM with H-weights via majorization and an accelerated proximal gradient scheme. We demonstrate the superior performance of the Newton method over existing methods including the latest quadratic semi-definite programming solver. This research also opens a new avenue towards efficient solution methods for the molecular embedding problem.


Talk 1 of the invited session Mon.3.H 2038
"Matrix optimization" [...]
Cluster 4
"Conic programming" [...]


  There are three major facts that should be watched out for in all payday loans in the United States. If you have already decided to take Levitra, be sure to consult a doctor, you don't have any contraindications and act strictly due to a prescription.